Powered by MOMENTUM MEDIA
spaceconnect logo
close

Lift off for Rocket Lab's most diverse mission yet

Stephen Kuper
Lift off for Rocket Lab's most diverse mission yet

Rocket Lab has announced that its next Electron mission will feature a diverse range of payloads from the US, France and New Zealand.

The mission, which will be Rocket Lab’s 16th Electron launch, will lift-off from Launch Complex 1 on New Zealand’s Māhia Peninsula during a 14-day launch window that opens on 16 November New Zealand time. 

Rocket Lab’s Electron launch vehicle will loft 30 satellites to a sun-synchronous orbit at 500-kilometre altitude for a range of customers, including TriSept, Unseenlabs, Swarm Technologies, Te Pūnaha Ātea - Auckland Space Institute, and Gabe Newell, co-founder of global gaming software company Valve. The satellites span a range of operations, from TriSept’s tech demonstration of new tether systems designed to accelerate spacecraft re-entry and reduce orbital debris, through to the next generation of maritime surveillance satellites for Unseenlabs, as well as communications satellites for Swarm Technologies.

The mission will also deploy New Zealand’s first student-built satellite, the APSS-1 satellite for Te Pūnaha Ātea - Auckland Space Institute at the University of Auckland.

==
==

A mass simulator will also be fixed to this mission’s Kick Stage in the form of a 3D printed gnome created for Valve’s Gabe Newell by multi-award-winning design studio Weta Workshop, the creative studio behind Lord of the Rings, Avatar, and Mulan. The unique space component is additively manufactured into the shape of Half-Life gaming icon Gnome Chompski.

The mission serves as an homage to the innovation and creativity of gamers worldwide, and also aims to test and qualify a novel 3D printing technique that could be employed for future spacecraft components.

Despite launching together as a rideshare, each satellite will be deployed to a unique orbit thanks to Rocket Lab’s Kick Stage. Once the Electron launch vehicle’s second stage reaches orbit, the Kick Stage separates and takes over as a space tug to conduct the final leg of the journey, providing propulsion and pointing to deliver multiple satellites to precise, individual orbits.

Peter Beck, Rocket Lab’s founder and CEO, said, “Small satellite operators shouldn’t have to compromise on orbits when flying on a rideshare mission, and we’re excited to provide tailored access to space for 30 satellites on this mission. It’s why we created the Kick Stage to enable custom orbits on every mission, and eliminate the added complexity, time, and cost of having to develop your own spacecraft propulsion or using a third-party space tug.”

PROMOTED CONTENT

About the payloads:

  • Payload: DRAGRACER – Organisation: TriSept
    • The DRAGRACER mission will test the effectiveness of new tether technologies designed to accelerate spacecraft reentry and reduce orbital debris at the conclusion of space missions. TriSept has completed the integration of a pair of qualified Millennium Space Systems 6U small satellites, one featuring the tether drag device and one without. The controlled spacecraft should deorbit in approximately 45 days, while the second spacecraft is expected to remain in orbit for seven to nine years, according to Tethers Unlimited, developer of the 70-metre-long Terminator Tape aboard the control satellite.
  • Payload: BRO-2 and BRO-3  Organisation: Unseenlabs
    • BRO-2 and BRO-3 are the second and third satellites in French company Unseenlabs’ planned constellation of about 20 satellites dedicated to maritime surveillance. The first BRO satellite was launched to orbit by Rocket Lab in August 2019. Unseenlabs’ constellation enables improved monitoring of activities at sea, such as illegal fishing and anti-environmental behaviour. Thanks to a unique proprietary technology, the BRO satellites are the first to be able to independently and precisely locate and fingerprint radio frequency (RF) emitters all around the globe, day or night, in any weather condition, and without requiring any special embarked tracking device. With three satellites in orbit, Unseenlabs’ clients can now benefit from the shortest revisit time available on the satellite RF geolocation market.
  • Payload: APSS-1  Organisation: Auckland Programme for Space Systems, the University of Auckland
    • The student-built Waka Āmiorangi Aotearoa APSS-1 satellite is designed to monitor electrical activity in Earth’s upper atmosphere to test whether ionospheric disturbances might be linked to earthquakes. The data from this mission will deliver deeper knowledge of these hard-to-access altitudes and drive understanding of how phenomena such as solar wind and geophysical events affect this atmospheric region.
  • Payload: Spacebees  Organisation: Swarm Technologies:
    • Swarm will launch the latest 24 1/4U SpaceBEE satellites to continue building out its planned constellation of 150 satellites to provide affordable satellite communications services to IoT devices in remote regions around the world. Swarm’s uniquely small satellites enable the company to provide network services and user hardware at the industry’s lowest cost and deliver maximum value to customers across a range of industries including maritime shipping, agriculture, energy, and ground transportation. The SpaceBEES will be integrated into two of Rocket Lab’s 3U Maxwell CubeSat dispensers for orbital deployment.
  • Mass Simulator: Gnome Chompski Organisation: Gabe Newell, founder of Valve Software
    • Manufactured with support from multi-award-winning design studio Weta Workshop, the unique space component is additively manufactured from titanium and printed in the shape of Half-Life gaming icon Gnome Chompski. The mission serves as an homage to the innovation and creativity of gamers worldwide, and also aims to test and qualify a novel 3D printing technique that could be employed for future spacecraft components.

The 15-centimetre gnome will remain attached to the Kick Stage during all mission phases and will burn up upon re-entry into Earth’s atmosphere during the de-orbiting process. 

Receive the latest developments and updates on Australia’s space industry direct to your inbox. Subscribe today to Space Connect here.

Tags:
Category
Receive the latest developments and updates on Australia’s space industry direct to your inbox. Subscribe today to Space Connect.