The rapid and transformative development of autonomous vehicles in recent years has seen numerous technological breakthroughs. The deployment of ultra high-performance gyroscopes can enhance their performance in terms of safety and guidance.
The use of ultra high-performance gyroscopes can already be found in a wide range of industries including infrastructure management, mining, space sciences, agriculture, and defence.
The new project is led by navigation systems manufacturer Advanced Navigation, with research partners the Australian National University (ANU), RMIT University, and commercial partner Corridor Insights. It will develop a new standard for optical gyroscopes, improving precision while reducing cost and size.
Associate professor Jong Chow from the ANU Centre for Gravitational Astrophysics, and a member of the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav), said the collaboration is a chance to bring together expertise from around the country.
"We have such a broad range of photonics expertise in Australia. This project brings it together, creating a nexus between universities, research and education, industry and government," Chow said.
The project has been supported through a $2.8 million Cooperative Research Centre Projects (CRC-P) grant to Advanced Navigation.
Chris Shaw, chief executive of Advanced Navigation, said the project would translate ground-breaking foundational research at universities to commercialisation, demonstrating Australia's capability across the advanced manufacturing pipeline.
"This project will establish Australia as a leading manufacturer of high-performance, cost-effective navigation solutions," Shaw said.
At the core of this endeavour is technology developed at the ANU Centre for Gravitational Astrophysics, OzGrav and Department of Quantum Science. The technique, 'digital interferometry', combines advanced signal processing with precision optics to create ultra-high-resolution measurements using light.
ANU researcher Chathura Bandutunga said, "We use digital signal processing to encode the lightwaves we use for our measurement. This encoding allows us to enhance the sensitivity of our instruments to rotation."
In parallel, researchers at RMIT's Integrated Photonics and Applications Centre (InPAC) are undertaking leading research in creating photonic chips – miniaturised optical components, enabling large experiments to be put into a much smaller package.
"The clever signal processing developed at ANU allows us to tell apart tiny signals from noise, and our photonic chip technology enables all that functionality to fit on a chip the size of a fingernail," Distinguished Professor Arnan Mitchell from RMIT said.
Taking these research ideas through to the field, commercial partner Corridor Insights will pilot the next-generation of optical gyroscope in autonomous infrastructure management, looking for early detection of defects and faults in Australia's rail network.
With the federal government announcement, work on the project can proceed at an accelerated pace, putting Canberran innovation on the map.
"This presents a great opportunity to bring the R&D strengths in instrumentation science located right here in the Canberra region to the forefront," Chow said.
Receive the latest developments and updates on Australia’s space industry direct to your inbox. Subscribe today to Space Connect here.